) Prove that tan3A-tan2A-tanA=tanAtan2A-tan2Atan3A-tan3Atana
Answers
Answered by
0
Step-by-step explanation:
lhs=tan3a-tan2a-tana
now, tan3a=tan(2a+a)
tan3a=tan2a+tana/1-tan2a tana. (since tan(a+b)= tana+tanb/1-tana tanb)
tan3a(1-tana tanb)=tan2a+tana
tan3a-tan3a×tana×tan2a=tan2a+tana
therefore, tan3a-tan2a-tana=tan3a×tan2a×tana
proved
Similar questions
Math,
4 months ago
Math,
4 months ago
Computer Science,
9 months ago
History,
9 months ago
English,
1 year ago