Math, asked by divdolas, 4 months ago

prove that (tan³thita-1)/(tan thita-1)= sec²thita+tan thita​

Answers

Answered by dolemagar
1

Step-by-step explanation:

tan³ -1

tan∅-1

multiplying numerator and dominator with tan∅+1

we have,

(tan³-1) (tan∅+1)

(tan∅ -1) (tan∅+1)

= tan⁴+tan³-tan-1

tan²∅-1²

= ( tan²)²-1 +tan∅(tan²-1)

tan²∅-1

= ( tan²-1)(tan²+1) +tan∅(tan²-1)

tan²∅-1

=(tan²∅-1)(tan²∅+1+tan∅)

tan²∅-1

= tan²∅+1+tan∅

=sec²∅+tan∅

= R.H.S

Similar questions