prove that (tan³thita-1)/(tan thita-1)= sec²thita+tan thita
Answers
Answered by
1
Step-by-step explanation:
tan³∅ -1
tan∅-1
multiplying numerator and dominator with tan∅+1
we have,
(tan³∅-1) (tan∅+1)
(tan∅ -1) (tan∅+1)
= tan⁴∅+tan³∅-tan∅-1
tan²∅-1²
= ( tan²∅)²-1 +tan∅(tan²∅-1)
tan²∅-1
= ( tan²∅-1)(tan²∅+1) +tan∅(tan²∅-1)
tan²∅-1
=(tan²∅-1)(tan²∅+1+tan∅)
tan²∅-1
= tan²∅+1+tan∅
=sec²∅+tan∅
= R.H.S
Similar questions
Environmental Sciences,
1 month ago
English,
1 month ago
English,
4 months ago
Math,
4 months ago
Chemistry,
10 months ago