prove that tan48°,tan23°,tan42°,tan67°=1
Answers
Answered by
0
Answer:
Step-by-step explanation:
Tan48=cot42
Tan23=cot67
Tan×cot×tan×cot=1
Hence proved
Answered by
3
Solution :
LHS = tan48°tan23°tan42°tan67°
Rearranging the terms, we
get
= tan67°tan23°tan42°tan48°
= tan67°tan(90-67°)tan42tan(90-42)
= tan67°cot67°tan42°cot42°
= 1 × 1
= 1
= RHS
••••
Similar questions