prove that tan4x=4tanx(1-tan^2x)/1- tan^2 x+tan^4x
Answers
Answered by
1
Answer:
Attachments:
Answered by
3
Answer:
Step-by-step explanation:
LHS = tan4x
= tan(2x + 2x)
use, the formula,
tan(A + B) = (tanA+tanB)/(1-tanA.tanB)
= (tan2x + tan2x)/(1-tan2x.tan2x)
=2tan2x/(1-tan²2x)
again, use the formula,
tan2A = 2tanA/(1-tan²A)
= 2{2tanx/(1-tan²x)}/[1-{2tanx/(1-tan²x)}²]
=4tanx.(1-tan²x)²/(1-tan²x)(1+tan⁴x-2tan²x-4tan²x)
=4tanx.(1-tan²x)/(1-6tan²x+tan⁴x) = RHS
Similar questions