prove that tan4x=4tanx-4tanx³x/1-6tan²x4tan⁴x
Answers
Answered by
3
Answer:
Step-by-step explanation:
LHS = tan4x
= tan(2x + 2x)
use, the formula,
tan(A + B) = (tanA+tanB)/(1-tanA.tanB)
= (tan2x + tan2x)/(1-tan2x.tan2x)
=2tan2x/(1-tan²2x)
again, use the formula,
tan2A = 2tanA/(1-tan²A)
= 2{2tanx/(1-tan²x)}/[1-{2tanx/(1-tan²x)}²]
=4tanx.(1-tan²x)²/(1-tan²x)(1+tan⁴x-2tan²x-4tan²x)
=4tanx.(1-tan²x)/(1-6tan²x+tan⁴x)
= 4tanx - 4tan³x / 1 - 6tan²x + tan⁴x
= R.H.S
Hence proved.
Answered by
4
Similar questions