Math, asked by IshmamZaman, 1 month ago

Prove that tan⁴x = tan²x sec²x - sec²x +1

Answers

Answered by suhail2070
1

Step-by-step explanation:

 rhs  =  { \tan( \alpha ) }^{2}  { \sec( \alpha ) }^{2}  -  { \sec( \alpha ) }^{2}  + 1 \\  \\  =  { \tan( \alpha ) }^{2}  { \sec( \alpha ) }^{2}  - ( { \sec( \alpha ) }^{2}  - 1) \\  \\  =  { \tan( \alpha ) }^{2}  { \sec( \alpha ) }^{2}  -  { \tan( \alpha ) }^{2}  \\  \\  =  { \tan( \alpha ) }^{2} ( { \sec( \alpha ) }^{2}  - 1) \\  \\  =  { \tan( \alpha ) }^{2} . { \tan( \alpha ) }^{2}  \\  \\  =  { \tan( \alpha ) }^{4}  \\  \\  = lhs.

Answered by hrwt001
4

the answer is

taking LHS

= tan⁴x

=(tan²x) (tan²x)

=(tan²x) (sec²x-1). [by using 1+tan²x =sec²x]

=tan²x sec²x - tan²x

=tan²x sec²x - (sec²x-1). [by using 1+ tan²x=sec²x]

=tan²x sec²x - sec²x + 1

HENCE, Lhs=Rhs

Similar questions