Math, asked by blu821104, 1 year ago

Prove that tan50+cot50=2sec10

Answers

Answered by GovindRavi
8
Hope this help..........
Attachments:
Answered by mysticd
2

 LHS = tan 50 \degree + cot 50 \degree \\= tan 50 \degree + \frac{1}{tan 50 \degree }\\= \frac{ tan^{2} 50 \degree + 1 }{tan 50 \degree } \\= \frac{sec^{2} 50 \degree }{tan 50 \degree}

_____________________

 \blue { By \: Trigonometric \:Identity )}

 \pink { 1 + tan^{2} \theta = sec^{2} \theta }

_____________________

 = \frac{\frac{1}{cos^{2} 50 }}{ \frac{sin 50}{cos 50 }} \\= \frac{1}{ sin 50 cos 50 } \\= \frac{2}{2 sin 50 cos 50 } \\= \frac{2}{ sin ( 2\times 50 )}

___________________

We know that,

 \orange  { 2sinA cos A  =sin 2A }

___________________

 = \frac{2}{sin 100} \\= 2 Cosec 100 \\= 2 Cosec (90 + 10 ) \\= 2sec10 \\= RHS

 Hence \:proved

•••♪

Similar questions