Prove that Tan50°-Tan40°=2Tan10°
Answers
Answered by
30
we have tan(a+b) = (tan a +tan b)/(1-tan a tan b)
tan(40+10) = (tan40+ tan10)/(1-tan40tan10)
tan50 = (tan40+ tan10)/(1-tan40tan10)
tan50(1-tan40tan10)=tan40+ tan10
tan50-tan50tan40tan10 = tan40+tan10
and tan50 = tan(90-40) = cot40
=> tan50-cot40tan40tan10 = tan40+ tan10
tan50-tan10 = tan40+ tan10
because cot40= 1/tan40
tan50 = tan40+2tan10
tan(40+10) = (tan40+ tan10)/(1-tan40tan10)
tan50 = (tan40+ tan10)/(1-tan40tan10)
tan50(1-tan40tan10)=tan40+ tan10
tan50-tan50tan40tan10 = tan40+tan10
and tan50 = tan(90-40) = cot40
=> tan50-cot40tan40tan10 = tan40+ tan10
tan50-tan10 = tan40+ tan10
because cot40= 1/tan40
tan50 = tan40+2tan10
Yashagarwal24:
Thanks brother!
Similar questions