prove that tan5x+tan3x/tan5x-tan3x=4 cos2x cos4x
Answers
Answered by
60
here is the solution
LHS= tan3x+tan5x/tan5x-tan3x
convert tan into sin and cos,
LHS = (sin5xcos3x+sin3xcos5x)/(sin5xcos3x-sin3xcos5x)
use :sin(a)cos(b)+cos(a)sin(b)=sin(a+b)
and sin(a)cos(b)-sin(b)cos(a)=sin(a-b)
LHS= Sin(8x)/sin(2x)
now use sin(2a)=2sin(a)cos(a)
= 2sin4xcos4x/sin2x
= 4sin2xcos2xcos4x/sin2x
= 4cos2xcos4x= RHS
=> LHS=RHS
hence proved
Answered by
13
Answer:
Step-by-step explanation:LHS= tan3x+tan5x/tan5x-tan3x
convert tan into sin and cos,
LHS = (sin5xcos3x+sin3xcos5x)/(sin5xcos3x-sin3xcos5x)
use :sin(a)cos(b)+cos(a)sin(b)=sin(a+b)
and sin(a)cos(b)-sin(b)cos(a)=sin(a-b)
LHS= Sin(8x)/sin(2x)
now use sin(2a)=2sin(a)cos(a)
= 2sin4xcos4x/sin2x
= 4sin2xcos2xcos4x/sin2x= 4cos2xcos4x= RHS
=> LHS=RHS
hence proved
Similar questions