Math, asked by preetkaur12, 1 year ago

prove that. tan69° + tan 66°+1= tan69°tan66°

Answers

Answered by kokan6515
114
hope u understand mark it as brainliest..
Attachments:

preetkaur12: thank you
Answered by hotelcalifornia
65

Answer:

\tan 69 ^ { \circ } \tan 66 ^ { \circ } = 1 + \tan 66 ^ { \circ } + \tan 69 ^ { \circ }

Hence proved

Solution:

We know that

\begin{aligned} \tan ( A + B ) & = \frac { \tan A + \tan B } { 1 - \tan A \tan B } \\\\ \tan \left( 69 ^ { \circ } + 66 ^ { \circ } \right) & = \frac { \tan 69 ^ { \circ } + \tan 66 ^ { \circ } } { 1 - \tan 69 ^ { \circ } \tan 66 ^ { \circ } } \\\\ \tan 135 ^ { \circ } & = \frac { \tan 69 ^ { \circ } + \tan 66 ^ { \circ } } { 1 - \tan 69 ^ { \circ } \tan 66 ^ { \circ } } \end{aligned}

We know \tan 135^{\circ} =-1 since \tan \frac{3\pi}{4} =-1

- 1 = \frac { \tan 69 ^ { \circ } + \tan 66 ^ { \circ } } { 1 - \tan 69 ^ { \circ } \tan 66 ^ { \circ } }

\tan 69 ^ { \circ } + \tan 66 ^ { \circ } = - 1 + \tan 69 ^ { \circ } \tan 66 ^ { \circ }

\tan 69 ^ { \circ } \tan 66 ^ { \circ } = 1 + \tan 66 ^ { \circ } + \tan 69 ^ { \circ }

Hence proved

Similar questions