Math, asked by jshankarshnkar720, 10 months ago

prove that tan6degree.tan21degree.tan30degree.tan69degree.tan84degree=1/root3

Answers

Answered by akshank610
1

Answer:

Step-by-step explanation:

tan(90 degreee-84 degreee)=cot6 degree

tan(90-21) =cot 69 degree

so ,cot 6 degree.cot 69 degree.tan 30 degree.tan 69 degree .tan84 degree

so tan 69 and cot 69 will be canceled out similarly for tan 6 degree. now tan 30 =1/root 3

so if everything is canceled out except tan 30 then the answer is =

1/root 3

HOPE THIS HELPS U

MARK THIS ANSWER AS BRAINLIEST

Answered by DrNykterstein
1

 </p><p> \sf \rightarrow \quad tan \:  {6}^{ \circ}  \cdot tan \:  {21}^{ \circ}  \cdot tan \:  {30}^{ \circ}  \cdot tan  \:  {69}^{ \circ} \cdot tan  \:  {84}^{ \circ}  \\  \\ \sf \rightarrow \quad cot \: (90 - 6) \cdot tan \:  {30}^{ \circ}  \cdot cot \: (90 - 21) \cdot tan \: {69}^{ \circ}  \cdot tan \:  {84}^{ \circ}   \\  \\  \sf \quad tan \: (90 -  \theta) = cot \:  \theta \\  \\ \sf \rightarrow \quad  \dfrac{1}{ \cancel{tan \:  {84}^{ \circ} }}  \cdot  \dfrac{1}{ \cancel{tan \:  {69}^{ \circ}} }  \cdot tan \:  {30}^{ \circ}  \cdot  \cancel{tan \:  {69}^{ \circ} } \cdot  \cancel{tan \:  {84}^{ \circ} } \\  \\  \sf \quad cot \:  \theta  =  \dfrac{1}{tan \: \theta}  \\  \\ \sf \rightarrow \quad tan \:  {30}^{ \circ}  \\  \\ \sf \rightarrow \quad  \frac{1}{ \sqrt{3} }  \qquad  \bigg( \:  \because \: tan \:  {30}^{ \circ}  =  \frac{1}{ \sqrt{3} } \:   \bigg)</p><p>

Similar questions