Math, asked by keshav1115, 9 months ago

Prove that
Tan70=2tan50+tan20​

Answers

Answered by anjanaparvathy2003
2

"According to the trigonometric identity,

tan70 = tan (20 + 50)

tan70= (tan20 + tan50) / 1-tan20 tan50

Tan70 - tan20 tan50 tan70= tan20 + tan50

Also tan70 tan20 = tan70 cot70 = 1

Hence, it will change to following equation

tan70 - tan50 = tan20 + tan50

So tan70 = tan20 + 2tan50

Complementary angles:

tan70=cot20

tan70tan20=cot20tan20=1

Tangent difference angle formula:

tan(a−b)=tana−tanb1+tanatanb

tan50=tan(70−20)=tan70−tan201+tan70tan20=tan70−tan201+1

2tan50=tan70−tan20

tan70=tan20+2tan50

Similar questions