prove that tan70=tan20 + 2tan50
Answers
Answered by
3
Hi Sayeem
i) tan(20) = tan(70 - 50) = {tan(70) - tan(50)}/{1 + tan(70)*tan(20)}
ii) Cross multiplying, tan(20) + tan(20)*tan(70)*tan(50) = tan(70) - tan(50)
==> tan(20) + tan(50) = tan(70) - tan(50)
[since tan(20) = cot(90 - 20) = cot(70); so tan(20)*tan(70) = cot(70)*tan(70) = 1]
Rearranging the above, tan(20) + 2*tan(50) = tan(70) [Proved]
© Ã K $ H Ã Y❤
HØPË IT HËLPZ
PLZ MARK IT AS THE BRAINLIEST ANSWER
i) tan(20) = tan(70 - 50) = {tan(70) - tan(50)}/{1 + tan(70)*tan(20)}
ii) Cross multiplying, tan(20) + tan(20)*tan(70)*tan(50) = tan(70) - tan(50)
==> tan(20) + tan(50) = tan(70) - tan(50)
[since tan(20) = cot(90 - 20) = cot(70); so tan(20)*tan(70) = cot(70)*tan(70) = 1]
Rearranging the above, tan(20) + 2*tan(50) = tan(70) [Proved]
© Ã K $ H Ã Y❤
HØPË IT HËLPZ
PLZ MARK IT AS THE BRAINLIEST ANSWER
sayeem786:
thanks man
Similar questions