Prove that tan70° = 2tan50° + tan20° .
Answers
Answered by
18
Answer:
hii...
your answer is here !
Explanation:
According to the trigonometric identity,
tan70 = tan (20 + 50)
tan70= (tan20 + tan50) / 1-tan20 tan50
Tan70 - tan20 tan50 tan70= tan20 + tan50
Also tan70 tan20 = tan70 cot70 = 1
Hence, it will change to following equation
tan70 - tan50 = tan20 + tan50
So tan70 = tan20 + 2tan50
Complementary angles:
tan70=cot20
tan70tan20=cot20tan20=1
Tangent difference angle formula:
tan(a−b)=tana−tanb1+tanatanb
tan50=tan(70−20)=tan70−tan201+tan70tan20=tan70−tan201+1
2tan50=tan70−tan20
tan70=tan20+2tan50
"
A.A.
Answered by
27
Answer:
To prove:-
- tan70° = 2tan50° + tan20°
Explanation:
Now cross multiplying the values
Hence, #proved
Similar questions