Math, asked by MOGILESURYA, 1 year ago

prove that tan72=tan18+2tan54

Answers

Answered by Deepsbhargav
22
SINCE,

 = > 72 - 18 = 54

Take "tan" on both sides :-

 = > tan(72 - 18) = tan54
_______________________________

Using trigonometric identity :-

 = > tan( \alpha - \beta ) = \frac{tan \alpha - tan \beta }{1 + tan \alpha .tan \beta }
________________________________

Then,

 = > tan(72 - 18) = tan54 \\ \\ = > \frac{tan72 - tan18}{1 + tan72.tan18} = tan54 \\ \\ = > \frac{tan72 - tan18}{1 + tan(90 - 18).tan18} = tan54 \\ \\ = > \frac{tan72 - tan18}{1 + cot18.tan18} = tan54 \\ \\ = > \frac{tan72 - tan18}{1 + 1} = tan54 \\ \\ = > tan72 - tan18 = 2tan54 \\ \\ = > tan72 = tan18 + 2tan54
_________________"[PROVED]"

=======================================

_-_-_-_☆BE \: \: \: \: BRAINLY☆_-_-_-_
Similar questions