Math, asked by Anonymous, 5 months ago

prove that tan7A.tan4A.tan3A=tan7A-tan4A-tan3A ​

Answers

Answered by NewGeneEinstein
4

Answer:

To prove:-

tan7A.tan4A.tan3A=tan7A-tan4A-tan3A

Proof:-

As we know that

\boxed {\sf 7A=4A+3A}

\\\qquad\quad\displaystyle\sf{:}\implies tan7A=tan (4A+3A)

\\\qquad\quad\displaystyle\sf{:}\implies tan7A=\dfrac {tan4A+tan3A}{1-tan4A.tan3A}

  • using cross multiplication method

\\\qquad\quad\displaystyle\sf{:}\implies tan7A (1-tan4A.tan3A)=tan4A+tan3A

\\\qquad\quad\displaystyle\sf{:}\implies tan7A-tan7A.tan4A.tan3A=tan4A+tan3A

\\\qquad\quad\displaystyle\sf{:}\implies tan7A-tan4A-tan3A=tan7A.tan4A.tan3A

\\\qquad\quad\displaystyle\sf{:}\boxed {\sf {\implies tan7A.tan4A.tan3A=tan7A-tan4A-tan3A}}\qquad\qquad (Proved)

Similar questions