Math, asked by wjsn2838, 4 days ago

prove that tan85 1/2° = (1+√2)(√2+√3)

Answers

Answered by mathdude500
2

Appropriate Question :-

Prove that :-

\rm \: \:  \:  \:  \:  \: tan82\dfrac{1}{2}\degree =  \:  (\sqrt{2} +  \sqrt{3}) \: (1 + \sqrt{2}) \\

\large\underline{\sf{Solution-}}

Consider

\rm \: tan82\dfrac{1}{2}\degree   \\

can be rewritten as

\rm \: =  \: tan\bigg(90\degree   - 7\dfrac{1}{2}\degree   \bigg)  \\

\rm \: =  \: cot 7\dfrac{1}{2}\degree \\

\rm \: =  \: cot\dfrac{15}{2}\degree \\

can be rewritten as

\rm \: =  \: \dfrac{cos\dfrac{15}{2}\degree}{sin\dfrac{15}{2}\degree}  \\

\rm \: =  \: \dfrac{2cos^{2} \dfrac{15}{2}\degree}{2 \: cos\dfrac{15}{2}\degree \: sin\dfrac{15}{2}\degree}  \\

\rm \: =  \: \dfrac{1 + cos15\degree  }{sin15\degree  }  \\

Thus, we get

\rm \:  tan82\dfrac{1}{2}\degree \: =  \:  \dfrac{1 + cos15\degree  }{sin15\degree  }  -  -  - (1) \\

Now, Consider

\rm \: cos15\degree   \\

\rm \: =  \:  \:  \: cos(45\degree   - 30\degree  ) \\

\rm \: =  \: \:  \: cos45\degree  cos30\degree   + sin45\degree  sin30\degree   \\

\rm \: =  \: \:  \: \dfrac{1}{ \sqrt{2} }  \times \dfrac{ \sqrt{3} }{2}  + \dfrac{1}{ \sqrt{2} }  \times \dfrac{1}{2}   \\

\rm \: =  \: \:  \: \dfrac{ \sqrt{3}  + 1}{ 2\sqrt{2} }     \\

Now, Consider

\rm \: sin15\degree   \\

\rm \: =  \:  \:  \: sin(45\degree   - 30\degree  ) \\

\rm \: =  \: \:  \: sin45\degree  cos30\degree  -  cos45\degree  sin30\degree   \\

\rm \: =  \: \:  \: \dfrac{1}{ \sqrt{2} }  \times \dfrac{ \sqrt{3} }{2}   - \dfrac{1}{ \sqrt{2} }  \times \dfrac{1}{2}   \\

\rm \: =  \: \:  \: \dfrac{ \sqrt{3} -  1}{ 2\sqrt{2} }     \\

So, on substituting these values in equation (1), we get

\rm \: tan82\dfrac{1}{2}\degree \\

\rm \: =  \: \dfrac{ 1+ \dfrac{ \sqrt{3}  + 1}{2 \sqrt{2} } }{\dfrac{ \sqrt{3} - 1 }{2 \sqrt{2} } }  \\

\rm \: =  \: \dfrac{2 \sqrt{2}  +  \sqrt{3}  + 1}{ \sqrt{3}  - 1}  \\

On rationalizing the denominator, we get

\rm \: =  \: \dfrac{2 \sqrt{2}  +  \sqrt{3}  + 1}{ \sqrt{3}  - 1} \times \dfrac{ \sqrt{3}  + 1}{ \sqrt{3}  + 1}   \\

\rm \: =  \: \dfrac{2 \sqrt{2}  +  \sqrt{3}  + 1 + 2 \sqrt{6}  + 3 +  \sqrt{3} }{3 - 1}  \\

\rm \: =  \: \dfrac{2 \sqrt{2}  +  2\sqrt{3}  + 4 + 2 \sqrt{6}   }{2}  \\

\rm \: =  \:  \sqrt{2} +  \sqrt{3} + 2 +  \sqrt{6}  \\

\rm \: =  \:  \sqrt{2} +  \sqrt{3} +  (\sqrt{2})^{2}  +  \sqrt{6}  \\

\rm \: =  \:  (\sqrt{2} +  \sqrt{3}) +  \sqrt{2} ( \sqrt{2}  +  \sqrt{3} ) \\

\rm \: =  \:  (\sqrt{2} +  \sqrt{3}) \: (1 + \sqrt{2}) \\

Hence,

\rm\implies \:\boxed{\sf{\rm \: \:\:   tan82\dfrac{1}{2}\degree =  \:  (\sqrt{2} +  \sqrt{3}) \: (1 + \sqrt{2}) \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

\rm \: tan(90\degree   - x) = cotx \\

\rm \: sin2x \:  =  \: 2 \: sinx \: cosx \\

\rm \: cos2x =  {2cos}^{2}x - 1 \\

\rm \: cos(x  -  y) = cosx \: cosy \:  +  \: sinx \: siny \\

\rm \: sin(x - y) = sinx \: cosy \:  -  \: cosx \: siny \\

Answered by maheshtalpada412
0

Step-by-step explanation:

\begin{array}{l} \tan 30=\dfrac{1}{\sqrt{3}} \\ \\ \tt\implies \dfrac{2 \tan 15}{1-\tan ^{2} 15}=\dfrac{1}{\sqrt{3}} \qquad Let \:\:\:\tan 15= a  \\ \\ \tt\implies 2 \sqrt{3} a =1- a ^{2} \\ \\ \tt\implies a ^{2}+2 \sqrt{3} a -1=0 \\ \\ \tt\implies a =\dfrac{-2 \sqrt{3} \pm \sqrt{12}+4}{2} \quad(\because \tan 15>0) \\ \\ \tt\implies \therefore \tan 15=2-\sqrt{3}\\ \\ \tt\implies  2 \tan 7 \cfrac{1}{2}  \\ \\ \tt\implies 1-\tan ^{2} 7 \cfrac{1}{2}=2-\sqrt{3} \:  \:  \:  \:  \:  \:  \operatorname{Let} \tan 7 \dfrac{1}{2}= b \\ \\ \tt\implies 2 b =(2-\sqrt{3})\left(1- b ^{2}\right) \\ \\ \tt\implies  (2-\sqrt{3}) b ^{2}+2 b -(2-\sqrt{3})=0 \\ \\ \tt\implies \therefore b=  -2+\sqrt{4+4(2-\sqrt{3})^{2}} \quad\left(\because \tan 7 \dfrac{1}{2}>0\right.  \\ \\ \tt\implies =\dfrac{-1+\sqrt{8}-4 \sqrt{3}}{(2-\sqrt{3})} \\ \\ \tt\implies \therefore \tan 7 \dfrac{1}{2}=\dfrac{\sqrt{6}-\sqrt{2}-1}{2-\sqrt{3}} \\ \\ \tt\implies \tan 82 \dfrac{1}{2}=\cot 7 \dfrac{1}{2}=\dfrac{2-\sqrt{3}}{\sqrt{6}-\sqrt{2}-1} \\ \\ \tt\implies =\dfrac{(2-\sqrt{3})(\sqrt{6}+\sqrt{2}+1)}{(\sqrt{6}-(\sqrt{2}+1))(\sqrt{6}+\sqrt{2}+1)} \\ \\ \tt\implies =\dfrac{2 \sqrt{6}-3 \sqrt{2}+2 \sqrt{2}-\sqrt{6}+2-\sqrt{3}}{6-(\sqrt{2}+1)^{2}} \\ \\ \tt\implies =\dfrac{\sqrt{6}-\sqrt{2}+2-\sqrt{3}}{3-2 \sqrt{2}} \\ \\ \tt\implies =\dfrac{(\sqrt{2}-1)(\sqrt{3}+\sqrt{2})}{(\sqrt{2}-1)^{2}} \\ \\ \tt\implies=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{2}-1}=(\sqrt{3}+\sqrt{2})(\sqrt{2}+1) \\ \\ \tt\implies \therefore \tan 82 \dfrac{1}{2}^{\circ}=(\sqrt{3}+\sqrt{2})(\sqrt{2}+1) \end{array}

Similar questions