Prove that: tanA/1-cotA+cotA/1-tanA=1+secA×cosec
Answers
Answered by
1
Step-by-step explanation:
tanA/1-cotA+cotA/1-tanA
=(sinA/cosA)sinA/sinA-cosA + (cosA/sinA)cosA/cosA-sinA
=sin²A/cosA(sinA-cosA)+cos²A/sinA(cosA-sinA)
=sin²A/cosA(sinA-cosA)-cos²A/sinA(sinA-cosA)
=sin³A-cos³A/cosAsinA(sinA-cosA)
=(sinA-cosA)(sin²A+sinAcosA+cos²A)/cosAsinA(sinA-cosA)
=(sinA-cosA)(1+sinAcosA)/cosAsinA(sinA-cosA)
=1+sinAcosA/cosAsinA
=secAcosecA+1
=1+secAcosecA
Answered by
0
Answer:
Attachments:
Similar questions