Math, asked by Kcom1952, 1 year ago

Prove that: tanA/1-cotA+cotA/1-tanA=1+secA×cosec

Answers

Answered by chandansaikia
1

Step-by-step explanation:

tanA/1-cotA+cotA/1-tanA

=(sinA/cosA)sinA/sinA-cosA + (cosA/sinA)cosA/cosA-sinA

=sin²A/cosA(sinA-cosA)+cos²A/sinA(cosA-sinA)

=sin²A/cosA(sinA-cosA)-cos²A/sinA(sinA-cosA)

=sin³A-cos³A/cosAsinA(sinA-cosA)

=(sinA-cosA)(sin²A+sinAcosA+cos²A)/cosAsinA(sinA-cosA)

=(sinA-cosA)(1+sinAcosA)/cosAsinA(sinA-cosA)

=1+sinAcosA/cosAsinA

=secAcosecA+1

=1+secAcosecA

Answered by sandy1816
0

Answer:

</p><p>{\green{\underline{\underline{\huge{\mathfrak\red{your\:answer\:attached\:in\:the\:photo}}}}}}

Attachments:
Similar questions