prove that
(tanA/1- cotA)+ cotA/1-tanA= (1+tanA+cotA)
Answers
Answered by
5
Step-by-step explanation:
tanA/1-cotA+cotA/1-tanA
=tanA/1-(1/tanA)+(1/tanA)/1-tanA
=tan²A/tanA-1+1/tanA(1-tanA)
=-tan²A/1-tanA+1/tanA(1-tanA)
=-tan³A+1/tanA(1-tanA)
=1-tan³A/tanA(1-tanA)
=(1-tanA)(1+tanA+tan²A)/tanA(1-tanA)
=1+tanA+tan²A/tanA
=1/tanA+tanA/tanA+tan²A/tanA
=cotA+1+tanA
=1+tanA+cotA
Similar questions