prove that :
tanA/1+secA - tanA/1-secA =2cosec
Answers
Answer:
L. H. S.
tan A / ( 1 + sec A) - tan A ( 1 - sec A)
Taking LCM of the denominators,
= tan A ( 1 - sec A) - tan A ( 1 + sec A) /
( 1 + sec A ) ( 1 - sec A)
= tan A ( - 1 sec A - 1 - sec A) / 1 - sec ^2 A
( : , ( 1 + sec A) ( 1 - sec A) = 1 - sec ^2 A
= tan A ( - 2 sec A / 1 - sec ^2
= 2 tan A . sec A / sec ^2 A - 1
= 2 tan A . sec A / tan ^2 A
(: sec ^2 A - tan ^2 A = 1 => sec ^2 A - 1 = tan^2A )
= 2 sec^2 A / tan ^2 A = 2 cos A / cos A sin A
(: sec A = 1/cos A and tan A = sin A / cos A )
= 2/sin A
= 2 cosec A (: 1/sinA = cosec A)
Therefore, RHS .
Hence proved....
Step-by-step explanation:
@MNF
Answer:
1+secA
tanA
−
1−secA
tanA
=
2⋅cosecA
L.H.S
1+secA
tanA
−
1−secA
tanA
=
1−sec
2
A
tanA(1−secA)−tanA(1+secA)
=
−tan
2
A
tanA(1−secA−1−secA)
=
−tanA
−2secA
=
sinA/cosA
2⋅1/cosA
=
sinA
2
= 2⋅ cosecA
=R.H.S
∴ L.H.S= R.H.S.