Math, asked by ganesh511, 1 year ago

prove that tanA/(1+tan^2A)^2+cotA/(1+cotA^2)^2=sinAcosA​

Answers

Answered by anu24239
2

ANSWER.... {}

  \frac{ \tan \alpha }{ {(1 +  {tan}^{2} \alpha  })^{2} }  +  \frac{ \cot \alpha  }{ {(1 +  {cot}^{2} \alpha })^{2} }  \\  \\  \frac{ \tan \alpha  }{ { \sec}^{4} \alpha  }  +  \frac{ \cot \alpha  }{  { cosec  }^{ 4 } \alpha  }  \\  \\  \tan \alpha . {cos}^{4}  \alpha  + cot \alpha . {sin}^{4}  \alpha  \\  \\ sin \alpha . {cos}^{3}  \alpha  + cos \alpha . {sin}^{3}  \alpha  \\  \\ cos \alpha . \sin \alpha ( {cos}^{2}  \alpha  +  {sin}^{2}  \alpha ) \\  \\ cos \alpha .sin \alpha  \\  \\ hence \: proved

Similar questions