Prove that tanA+cotA = 2
Answers
Answered by
1
bro I am saying that it is not be equal to 2 I think it must be equal to
Attachments:
sivaprasath:
If A = 45° Then, it is possible,.
Answered by
2
Solution :
_____________________________________________________________
Given & To Prove :
⇒ Tan A + Cot A = 2
_____________________________________________________________
⇒ Tan A + = 2
⇒ = 2
⇒ Tan²A + 1 = 2Tan A
⇒ Tan²A - 2Tan A + 1 = 0
⇒ (Tan A - 1)² = 0
⇒ Tan A - 1 = 0
⇒Tan A = 1
We know that,
Tan 45° = 1
Hence, A = 45°
So,
Under the condition ,
If A = 45°
Then, Tan A + cot A = 2
Aliter,.
(We know that,
Tan A =
&
Cot A = )
So,
⇒ = 2
⇒ = 2
⇒ = 2
⇒
Again if A = 45°
⇒ 1 =
⇒ 1 =
⇒ 1 = 1
LHS = RHS
But, if A ≠ 45°
It wouldn't be possible !
_____________________________________________________________
Hope it Helps !!
⇒ Mark as Brainliest,..
_____________________________________________________________
Given & To Prove :
⇒ Tan A + Cot A = 2
_____________________________________________________________
⇒ Tan A + = 2
⇒ = 2
⇒ Tan²A + 1 = 2Tan A
⇒ Tan²A - 2Tan A + 1 = 0
⇒ (Tan A - 1)² = 0
⇒ Tan A - 1 = 0
⇒Tan A = 1
We know that,
Tan 45° = 1
Hence, A = 45°
So,
Under the condition ,
If A = 45°
Then, Tan A + cot A = 2
Aliter,.
(We know that,
Tan A =
&
Cot A = )
So,
⇒ = 2
⇒ = 2
⇒ = 2
⇒
Again if A = 45°
⇒ 1 =
⇒ 1 =
⇒ 1 = 1
LHS = RHS
But, if A ≠ 45°
It wouldn't be possible !
_____________________________________________________________
Hope it Helps !!
⇒ Mark as Brainliest,..
Similar questions