Math, asked by richik1, 1 year ago

Prove that tanA+cotA = 2

Answers

Answered by Mohit11082002
1
bro I am saying that it is not be equal to 2 I think it must be equal to
Attachments:

sivaprasath: If A = 45° Then, it is possible,.
Answered by sivaprasath
2
Solution :

_____________________________________________________________

Given & To Prove :

⇒ Tan A + Cot A = 2

_____________________________________________________________

⇒ Tan A +   \frac{1}{Tan A} = 2

 \frac{Tan^2A + 1}{tan A} = 2 = 2

⇒ Tan²A + 1 = 2Tan A

⇒ Tan²A - 2Tan A + 1 = 0

⇒ (Tan A - 1)² = 0

⇒ Tan A - 1 = 0

⇒Tan A = 1

We know that,

Tan 45° = 1

Hence,  A = 45°

So,

Under the condition ,

If A = 45°

Then, Tan  A + cot A = 2

Aliter,.

(We know that,

Tan A =  \frac{sin A}{cos A}

&

Cot A =  \frac{cos A}{sin A} )

So,

 \frac{sin A}{cos A} +  \frac{cos A}{sin A} = 2

 \frac{sin^2 A + cos ^2A}{sinAcosA} = 2

 \frac{1}{sin A cos A} = 2

1 = 2sinAcosA

Again if A = 45°

⇒ 1 = 2( \frac{1}{ \sqrt{2} }) (  \frac{1}{ \sqrt{2} } )

⇒ 1 = 2 ( \frac{1}{2} )

⇒ 1 = 1

LHS = RHS

But, if A ≠ 45°

It wouldn't be possible !
_____________________________________________________________

                                 Hope it Helps !!

⇒ Mark as Brainliest,..

Swarup1998: Superb answer, bro!
sivaprasath: thanks bro,.
Similar questions