Prove that (tana+cota)^2 =sec^2 a+cosec^2a=sec^2a×cosec^2 a
Answers
Answered by
6
Proof
L.H.S → (tanA + cotA)²
L.H.S → (tanA + 1/tanA)²
L.H.S → [(tan²A + 1)/tanA]²
L.H.S → (sec²A/tanA)²
L.H.S → (sec²A ÷ sinA/cosA)²
L.H.S → (sec²A × cosA/sinA)²
L.H.S → (1/cos²A × cosA/sinA)²
L.H.S → (1/cosA × 1/sinA)²
L.H.S → (secA × cosecA)²
L.H.S → sec²A × cosec²A = R.H.S
What about middle term?
Mid Term → sec²A + cosec²A
Mid Term → 1/cos²A + 1/sin²A
Mid Term → (sin²A + cos²A)/cos²A sin²A
Mid Term → 1/(cos²A sin²A)
Mid Term → 1/cos²A × 1/sin²A
Mid Term → sec²A × cosec²A = R H.S
Hence Proved
AbhijithPrakash:
Awesome..!!!
Similar questions