Math, asked by lakhlanidhyey, 2 months ago

Prove that (tanA + cotA)² + (sinA + cosecA)² + (cosA + secA)²=9 +2tan²A + cot²A​

Answers

Answered by ranitani632
0

Answer:

please this Disclaimer to get the best I are looking or something to the store today timeing a rhe me

Answered by msyamala04
0

Answer:

cosec θ−cotθ)

2

=

1+cosθ

1−cosθ

(ii)

1+sinA

cosA

+

cosA

1+sinA

=2secA

(iii)

1−cotθ

tanθ

+

1−tanθ

cotθ

=1+secθcosec θ[Hint: Write the expression in terms of sinθ and cosθ

(iv)

secA

1+secA

=

1−cosA

sin

2

A

[Hint: Simplify LHS and RHS separately].

(v)

cosA+sinA+1

cosA−sinA−1

=cosec A+cotA, Using the identity cosec

2

A=1+cot

2

A

(vi)

1−sinA

1+sinA

=secA+tanA

Similar questions