Math, asked by shivam123439, 1 year ago

prove that tanA-cotA/sinA*cosA=tan^2A-cot^2A​

Answers

Answered by tanmoyvestige
3

Answer:

RHS = tan²A - cot²A

=  ( tan A - cotA) (tanA + cotA) {(a-b) (a + b) = a² - b²}

we know that ,

tan A = sinA/cosA

cot A = cosA/sinA

= (tanA - cotA) (sinA/cosA + cosA/sinA)

(sinA/cosA + cosA/sinA) :- LCM = sinA cosA

= (tanA - cotA) ( sin²A + cos²A/sinA cosA)

but , we know that , sin²A + cos²A = 1

so,

=  (tanA - cotA) ( 1/sinAcosA)

= (tanA - cotA)/sinAcosA

= LHS

HENCE PROVED

Step-by-step explanation:


shivam123439: thnks
Answered by vinolachu
0

Step-by-step explanation:

above pic will help u

Attachments:
Similar questions