prove that tanA-cotA/sinA*cosA=tan^2A-cot^2A
Answers
Answered by
3
Answer:
RHS = tan²A - cot²A
= ( tan A - cotA) (tanA + cotA) {(a-b) (a + b) = a² - b²}
we know that ,
tan A = sinA/cosA
cot A = cosA/sinA
= (tanA - cotA) (sinA/cosA + cosA/sinA)
(sinA/cosA + cosA/sinA) :- LCM = sinA cosA
= (tanA - cotA) ( sin²A + cos²A/sinA cosA)
but , we know that , sin²A + cos²A = 1
so,
= (tanA - cotA) ( 1/sinAcosA)
= (tanA - cotA)/sinAcosA
= LHS
HENCE PROVED
Step-by-step explanation:
shivam123439:
thnks
Answered by
0
Step-by-step explanation:
above pic will help u
Attachments:
Similar questions
History,
6 months ago
Computer Science,
6 months ago
Business Studies,
6 months ago
Computer Science,
1 year ago
Biology,
1 year ago
Biology,
1 year ago