Math, asked by simham, 1 year ago

prove that tanA+CotA= sinA.CosecA

Answers

Answered by Anonymous
1
  tanA + cotA = sinA/cosA + cosA/sinA
= (sin²A + cos²A) / cosA.sinA
= 1 / cosA.sinA
= secA.cosecA

Anonymous: pls check the question.
Answered by Anonymous
0
 tanA + cotA

= \frac{sinA}{cosA}+\frac{cosA}{sinA}

= \frac{(sin^{2}A + cos^{2}A)}{cosA.sinA}

= \frac{1}{cosA.sinA}

secA.cosecA  PROVED

Similar questions