Math, asked by vineelrao9, 1 day ago

Prove that (tanA + SecA-1) CosA÷SinA + CosA-1= 1+ Sin A÷cosA​

Answers

Answered by mdsaifhassanafridi
0

tanA−secA+1

tanA+secA−1

=

cosA

1+sinA

tanA−secA+1

tanA+secA−1

=

cosA

1+sinA

Taking L.H.S.-

tanA−secA+1

tanA+secA−1

=

tanA−secA+1

(tanA+secA)−(sec

2

A−tan

2

A)

[∵1+tan

2

A=sec

2

A]

=

tanA−secA+1

(tanA+secA)−(secA+tanA)(secA−tanA)

=

tanA−secA+1

(tanA+secA)(1−(secA−tanA))

=

tanA−secA+1

(tanA+secA)(1−secA+tanA)

=tanA+secA

=

cosA

sinA

+

cosA

1

=

cosA

1+sinA

= R.H.S.

Hence proved.

Answered by prajishpkumar755
0

Step-by-step explanation:

Solution

tanA−secA+1

tanA+secA−1

=

cosA

1+sinA

Taking L.H.S.-

tanA−secA+1

tanA+secA−1

=

tanA−secA+1

(tanA+secA)−(sec

2

A−tan

2

A)

[∵1+tan

2

A=sec

2

A]

=

tanA−secA+1

(tanA+secA)−(secA+tanA)(secA−tanA)

=

tanA−secA+1

(tanA+secA)(1−(secA−tanA))

=

tanA−secA+1

(tanA+secA)(1−secA+tanA)

=tanA+secA

=

cosA

sinA

+

cosA

1

=

cosA

1+sinA

= R.H.S.

Hence proved

Similar questions