Prove that (tanA + SecA-1) CosA÷SinA + CosA-1= 1+ Sin A÷cosA
Answers
Answered by
0
tanA−secA+1
tanA+secA−1
=
cosA
1+sinA
tanA−secA+1
tanA+secA−1
=
cosA
1+sinA
Taking L.H.S.-
tanA−secA+1
tanA+secA−1
=
tanA−secA+1
(tanA+secA)−(sec
2
A−tan
2
A)
[∵1+tan
2
A=sec
2
A]
=
tanA−secA+1
(tanA+secA)−(secA+tanA)(secA−tanA)
=
tanA−secA+1
(tanA+secA)(1−(secA−tanA))
=
tanA−secA+1
(tanA+secA)(1−secA+tanA)
=tanA+secA
=
cosA
sinA
+
cosA
1
=
cosA
1+sinA
= R.H.S.
Hence proved.
Answered by
0
Step-by-step explanation:
Solution
tanA−secA+1
tanA+secA−1
=
cosA
1+sinA
Taking L.H.S.-
tanA−secA+1
tanA+secA−1
=
tanA−secA+1
(tanA+secA)−(sec
2
A−tan
2
A)
[∵1+tan
2
A=sec
2
A]
=
tanA−secA+1
(tanA+secA)−(secA+tanA)(secA−tanA)
=
tanA−secA+1
(tanA+secA)(1−(secA−tanA))
=
tanA−secA+1
(tanA+secA)(1−secA+tanA)
=tanA+secA
=
cosA
sinA
+
cosA
1
=
cosA
1+sinA
= R.H.S.
Hence proved
Similar questions
Math,
23 hours ago
Math,
23 hours ago
Business Studies,
1 day ago
Math,
1 day ago
Accountancy,
8 months ago
Physics,
8 months ago