Prove that tanA+secA-1/tanA-secA+1=1+sinA/cosA
Attachments:
![](https://hi-static.z-dn.net/files/d57/39d5c2da6a7da7262c4467f7b24dd4d3.jpg)
Answers
Answered by
12
See image u will understand
Attachments:
![](https://hi-static.z-dn.net/files/d3d/20133ad6ef786dd10edd9384ff3a9d1d.jpg)
Answered by
11
LHS: tanA+secA-1/tanA-secA+1
(tanA+secA)-(sec^2A-tan^2A)/tanA-secA+1
tanA+secA-[(secA+tanA)(secA-tanA)]/tanA-secA+1
(tanA+secA)[1-(secA-tanA)]/tanA-secA+1
(tanA+secA)[1-secA+tanA]/tanA-secA+1
secA+tanA
1/cosA+sinA/cosA
1+sinA/cosA:LHS
(tanA+secA)-(sec^2A-tan^2A)/tanA-secA+1
tanA+secA-[(secA+tanA)(secA-tanA)]/tanA-secA+1
(tanA+secA)[1-(secA-tanA)]/tanA-secA+1
(tanA+secA)[1-secA+tanA]/tanA-secA+1
secA+tanA
1/cosA+sinA/cosA
1+sinA/cosA:LHS
Similar questions