Prove that tanA+secA-1/tanA-secA+1=1+sinA/cosA
Attachments:
Answers
Answered by
12
See image u will understand
Attachments:
Answered by
11
LHS: tanA+secA-1/tanA-secA+1
(tanA+secA)-(sec^2A-tan^2A)/tanA-secA+1
tanA+secA-[(secA+tanA)(secA-tanA)]/tanA-secA+1
(tanA+secA)[1-(secA-tanA)]/tanA-secA+1
(tanA+secA)[1-secA+tanA]/tanA-secA+1
secA+tanA
1/cosA+sinA/cosA
1+sinA/cosA:LHS
(tanA+secA)-(sec^2A-tan^2A)/tanA-secA+1
tanA+secA-[(secA+tanA)(secA-tanA)]/tanA-secA+1
(tanA+secA)[1-(secA-tanA)]/tanA-secA+1
(tanA+secA)[1-secA+tanA]/tanA-secA+1
secA+tanA
1/cosA+sinA/cosA
1+sinA/cosA:LHS
Similar questions