prove that (tanA+secA-1)/(tanA-secA+1)=(1+sinA)/(cosA)
Answers
Answered by
1
Answer:
tanA + secA - 1 / tanA - secA + 1 = 1 + sinA / cosA
LHS = tanA + secA -1 / tanA - secA + 1
= tanA + secA + tan2A - sec2A / tanA - secA + 1
as tan2A + 1 = sec2A
= tanA + secA +(tanA + secA)(tanA - secA)/ tanA - secA + 1
= tanA + secA( 1 + tanA - secA) / tanA - secA + 1
=tanA + secA
= sinA / cosA + 1/cosA
= sinA + 1 / cosA
Similar questions