Math, asked by nanirocks974p2mwtr, 1 year ago

prove that...... TanA+SinA÷TanA-SinA=SecA+1÷SecA-1

Answers

Answered by Anonymous
281
\underline{\mathfrak{Solution : }}



\text{Given,}



\mathsf{ \implies RHS \: = \: \dfrac{ sec \: A \: + \: 1}{ sec \: A \: - \: 1}}<br />



\mathsf{\implies LHS \: = \: \dfrac{ tan \: A \: + \: sin \: A }{ tan \: A \: - \: sin \: A }}<br />



\mathsf{= \: \dfrac{ \: \quad \dfrac{sin \:A}{cos \: A} \:+ \: sin \: A \quad}{ \dfrac{ sin \:A}{cos \: A} \: - \: sin \: A} } \qquad<br />\boxed{\mathsf{ \implies tan \: A = \: \dfrac{sin \: A}{ cos \: A }}}



\mathsf{ = \: \dfrac{\qquad \dfrac{ sin \: A \: + \: sin \: A \: \times \: cos \: A}{ \cancel{cos \:A}} \qquad}{\qquad \dfrac{ sin \: A \: - \: sin \:A \: \times \: cos \:A}{ \cancel{cos \:A}} \qquad}}<br />



\mathsf{= \: \dfrac{ sin \: A \: + \: sin \:A \: \times \: cos \: A}{ sin \:A \: - \: sin \:A \: \times \: cos \:A}}



\mathsf{ = \: \dfrac{\cancel{ sin \:A}( 1 \: + \: cos \:A)}{ \cancel{ sin \:A}( 1 \: - \: cos \:A)}}



\mathsf{= \: \dfrac{ \quad 1 \: + \: \dfrac{1}{ sec \:A} \quad}{ \quad1 \: - \: \dfrac{1}{ sec \: A} \quad}} \qquad\boxed{\mathsf{\implies cos \:A \: = \: \dfrac{1}{sec \:A}}} <br />



\mathsf{= \: \dfrac{\quad \dfrac{ sec \:A \: + \:1}{ \cancel{sec \:A}}\quad}{ \quad \dfrac{ sec \: A \: - \:1}{ \cancel{sec \: A}}\quad} }



\mathsf{ \implies \: \dfrac{ \: sec \:A \: + \:1 \: }{ \: sec \: A \: - \:1 \: }} = \: \boxed{\mathsf{RHS} }



\underline{\mathfrak{Proved !!}}

dikshaverma4you: Excellently solved !
Keep it up !
Anonymous: Thanks didu g !!
Answered by DimpleDoll
139
Heya !
here's Ur Answer !

 \implies \frac{tan \: A \: + sin \: A}{tan \: A - sin \: A} = \frac{sec \: A+ 1}{sec \: A - 1} \\

 \implies \: \frac{sin \: A \: + sin \: A \: cos \: A}{sin \: A - sin \: A \: cos \: A} \\

 \implies\frac{1 + cos \: A}{1 - cos \: A } \\

 \implies \: \frac{cos \: A( \frac{1}{cos \: A + 1}) }{cos \: A( \frac{1}{cos \: A \: - 1}) } \\

 \implies \frac{sec \: A \: + 1}{sec \: A \: - 1} \\

# be brainly

Anonymous: Hi
Similar questions