Prove that ( tanA - tanB )^2 + ( 1 + tanA.tanB)^2 = sec^2A. sec^2B.
Answers
Answered by
4
Answer:
Step-by-step explanation:
lkkk
Attachments:
Answered by
4
Answer:
(tanA - tanB)² + (1 + tanA.tanB)²
【 ( a - b )² = a² + b² - 2ab 】
【 ( a + b )² = a² + b² + 2ab 】
( tan²A + tan²B - 2 . tanA . tanB ) + (1 + tan²A . tan²B + 2 . tanA . tanB
Here ,
-2 . tanA . tanB & +2 . tanA . tanB gets cancelled
1 + tan²A + tan²B + tan²A . tan²B
( 1 + tan²A ) . ( 1 + tan²B )
sec²A . sec²B
Hence proved .
Similar questions