Math, asked by IBRAHIM6204, 9 months ago

Prove that tangents drawn at the end of diameter is parallel

Answers

Answered by rajeshchouhan26
0

Prove that tangents drawn at the end of diameter is parallel

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
9

\huge\sf\gray{To\;Prove}

✭ Tangents drawn at the end of a diameter are parallel

\rule{110}1

\huge\sf\purple{Steps}

\large\sf\star\: Diagram\: \star

\setlength{\unitlength}{.79mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(25,10){\line(0,5){40}}\put(25,30){\circle*{1}}\put(27,29){\sf\large{O}}\put(25,10){\vector(-1,0){40}}\put(25,50){\vector(-1,0){40}}\put(25,10){\vector(1,0){40}}\put(25,50){\vector(1,0){40}}\put(23,51){\sf\large{A}}\put(-16,45){\sf\large{P}}\put(-14,50){\circle*{1}}\put(23,5){\sf\large{B}}\put(-16,5){\sf\large{R}}\put(-14,10){\circle*{1}}\put(64,45){Q}\put(64,4){S}\end{picture}

Given that AB is a diameter we can use the theorem

Tangents ⊥ radius

➝ OA ⊥ PQ

And hence ,

»» ∠OAP = 90° -eq(1)

Also,

»» OB ⊥ MN

And so,

➳ ∠OBN = 90° -eq(2)

By eq(1) and eq(2)

➳ ∠OAP = ∠OBN = 90°

With the help of converse of Alternate interior angles theorem we can finalise that,

\sf\orange{PQ || MN }

\rule{170}3

Similar questions