Math, asked by varshini031025, 9 months ago

prove that tangents drawn at the ends of a diameter of a circle are parallel​

Answers

Answered by viny10
3

Answer:

Hope it helps you

Step-by-step explanation:

ANSWER

To prove: PQ∣∣ RS

Given: A circle with centre O and diameter AB. Let PQ be the tangent at point A & Rs be the point B.

Proof: Since PQ is a tangent at point A.

OA⊥ PQ(Tangent at any point of circle is perpendicular to the radius through point of contact).

∠OQP=90o …………(1)

OB⊥ RS

∠OBS=90o ……………(2)

From (1) & (2)

∠OAP=∠OBS

i.e., ∠BAP=∠ABS

for lines PQ & RS and transversal AB

∠BAP=∠ABS i.e., both alternate angles are equal.

So, lines are parallel.

$$\therefore PQ||RS.

Answered by Anonymous
7

Answer:

please change your DP baby ok

Nice

Similar questions