Math, asked by saidurganemani, 1 year ago

Prove that tangents drawn at the ends of a diameter of a circle are parallel

Answers

Answered by reedwei
0

Answer:

Step-by-step explanation:

Attachments:
Answered by DILhunterBOYayus
20

\sf{\bold{\blue{\underline{\underline{Given}}}}}

● AB,CD are two tangents at the ends of a diameter PQ in circle with centre O⠀⠀⠀

\sf{\bold{\red{\underline{\underline{To\:Find}}}}}

\pink{AB\parallel{CD}}  ⠀⠀⠀⠀

\sf{\bold{\purple{\underline{\underline{Solution}}}}}

If APB is the tangent and OP joined,

\therefore{\pink{OP⊥{AB}}}

similarly,

\therefore{\pink{OQ⊥ {CD}}}

\rightsquigarrow{\angle{APQ}=90°}

\rightsquigarrow{\angle{CQP}=90°}

\implies{\angle{APQ}+\angle{CQP}=90°+90°=180°}

\textsf{But there are co-interior angle}

so,

\rightsquigarrow\orange{AB\parallel{CD}} 

\sf{\bold{\green{\underline{\underline{Answer}}}}}⠀⠀⠀⠀

☆The tangents drawn at the ends of a diameter of a circle are parallel,\tt{\red{\underline{\overline{《Proved》}}}} 

Attachments:
Similar questions