Math, asked by mindudhar0, 5 months ago

Prove that tano/1-coto+coto/1-tano =1+tano+coto​

Answers

Answered by Arceus02
9

Given to proof:-

  •  \sf \dfrac{tan \theta}{1 - cot\theta}  +  \dfrac{cot\theta}{1 - tan\theta}  = 1 + tan\theta  + cot\theta

 \\

Proof:-

Considering \underline{\boxed{\sf{\pink{L.H.S.}}}},

\sf \dfrac{tan\theta}{1 - cot\theta}  +  \dfrac{cot\theta}{1 - tan\theta}

  • We know that, cotθ = 1/tanθ

 \sf \longrightarrow    \Bigg \{\dfrac{tan\theta}{  \bigg(1 -  \dfrac{1}{tan\theta}  \bigg) } \Bigg \}  +   \Bigg \{\dfrac{   \Big(\dfrac{1}{tan\theta} \Big) }{1 - tan\theta}   \Bigg \}

   \sf \longrightarrow  \Bigg \{\dfrac{tan\theta}{  \bigg(  \dfrac{tan\theta - 1}{tan\theta}  \bigg) } \Bigg \}  +    \dfrac{1}{tan\theta(1 - tan\theta)}

 \sf \longrightarrow     \dfrac{tan { }^{2}\theta }{tan\theta - 1}  +  \dfrac{1}{tan\theta(1 - tan\theta )}

  • Multiplying numerator and denominator by (-1) in first term and then rearranging,

 \sf \longrightarrow      \dfrac{1}{tan\theta(1 - tan\theta )}  -  \dfrac{tan { }^{2} \theta}{1 - tan\theta}

\sf \longrightarrow  \dfrac{1 - tan { }^{3}\theta }{tan\theta(1 - tan\theta)}

  • Expanding numerator using a³ - b³ = (a - b)(a² + b² + ab),

\sf \longrightarrow  \dfrac{(1 - tan\theta)(1 + tan { }^{2} \theta + tan\theta)}{tan\theta(1 - tan\theta)}

\sf \longrightarrow  \dfrac{ \cancel{(1 - tan\theta)}(1 + tan { }^{2} \theta + tan\theta)}{tan\theta \cancel{(1 - tan\theta)}}

\sf \longrightarrow  \dfrac{1 +  {tan}^{2}\theta + tan\theta }{tan\theta}

\sf \longrightarrow  \dfrac{1 }{tan\theta}  +  \dfrac{ {tan}^{2}\theta }{ tan\theta}  +  \dfrac{tan\theta}{tan\theta}

\sf \longrightarrow cot\theta + tan\theta + 1

 \longrightarrow \underline{\underline{\sf{\green{1 + tan\theta + cot\theta}}}}

\leadsto \underline{\boxed{\sf{\pink{ R.H.S. }}}}

\\

So, L.H.S. = R.H.S.

Hence verified.

Similar questions