Math, asked by Surya1811, 1 year ago

Prove that
(tano/seco-1) - (sino/
1+coso)
= 2 coto

Answers

Answered by Anonymous
2

LHS:

 (\frac{tan \: a}{sec \: a - 1} ) - ( \frac{sin \: a}{1 + cos \: a} ) = 2 \: cot \: a \\ ( \frac{ \frac{sin \: a}{cos \: a} }{ \frac{1 - cos \: a}{cos \: a} } ) - ( \frac{sin \: a}{1 + cos \: a} ) \\ ( \frac{sin \: a}{1 - cos \: a} ) - ( \frac{sin \: a}{1 + cos \: a} ) \\ ( \frac{sin \: a(1 + cos \: a) - sin \: a(1 - cos \: a)}{(1 - cos \: a)(1 + cos \: a)}  \\  \frac{sin \: a + sin \: a \: cos \: a - sin \: a  +  sin \: a \: cos \: a}{ {sin}^{2}a }  \\  \frac{2sin \: a \: cos \: a}{ {sin}^{2} a}  \\  \\ 2 \frac{cos \: a}{sin \: a}  \\  \\ 2cot \: a

LHS = RHS

Hence proved

Hope it helps

Mark as brainiliest

Similar questions