Math, asked by rahulnethi3, 9 months ago

prove that tanO+secO-1/tanO-secO+1 = secO+tanO​

Answers

Answered by sandy1816
6

Step-by-step explanation:

tanO+secO-1/tanO-secO+1

=(secO+tanO)-(sec²O-tan²O)/(tanO-secO+1)

=(secO+tanO)(1-secO+tanO)/(tanO-secO+1)

=secO+tanO

Answered by Anonymous
23

Solution

 \frac{ \tan(\theta) +  \sec(\theta) - 1  }{ \tan(\theta) -  \sec(\theta)  + 1 }  =  \sec(\theta)  +  \tan(\theta)

LHS

 =  \frac{ \tan(\theta) +  \sec(\theta) - 1  }{ \tan(\theta) -  \sec(\theta)  + 1 }

We know that

  •  { \sec }^{2} \theta -  { \tan }^{2} \theta = 1

So put the value of 1

 = \frac{ \tan(\theta) +  \sec(\theta) - ( {sec}^{2}\theta -  {tan}^{2}\theta)    }{ \tan(\theta) -  \sec(\theta)  + 1 }

  = \frac{tan \: \theta \:  + sec \:\theta \:  - (sec \: \theta + tan \:\theta)(sec \: \theta - tan \:  \theta) }{tan \: \theta - sec \:\theta + 1 }

Now,

tan \: \theta + sec \: \theta \: is \: common

So,

 =  \frac{(tan \: \theta + sec \: \theta)(1 - sec \: \theta + tan \: \theta)}{(1 - sec \: \theta + tan \: \theta)}

( 1 - sec \: \theta + tan \: \theta) \: will \: be \: cancelled

 \boxed{\red{= tan \: \theta + sec \: \theta }} RHS

Hence Proved !!

__________________________

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions