Math, asked by eishitharaj, 7 months ago

prove that tanQ/1 - cotQ + cotQ/1 - tanQ = 1 + tanQ + cotQ

Answers

Answered by sandy1816
8

Step-by-step explanation:

LHS:

tanA/1-cotA + cotA/1-tanA

=(sinA/cosA)/(sinA-cosA/sinA)+(cosA/sinA)/(cosA-sinA/cosA)

=sin²A/cosA(sinA-cosA)-cos²A/sinA(sinA-cosA)

=sin³A-cos³A/sinAcosA(sinA-cosA)

=(sinA-cosA)(1+sinAcosA)/sinAcosA(sinA-cosA)

=1+sinAcosA/sinAcosA

=secAcosecA+1

RHS:

1+tanA+cotA

=1+sinA/cosA+cosA/sinA

=sinAcosA+1/sinAcosA

=1+secAcosecA

hence LHS=RHS

Similar questions