prove that tantheta÷1-cottheta+cottheta÷1-tantheta=1+sectheta
Answers
Answer:
Question :
Solution :
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ (Secθ -Cosecθ)(1 + Tanθ + Cotθ) = TanθSecθ - CotθCosecθ
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ (Secθ -Cosecθ)(1 + Tanθ + Cotθ) = Tanθ Secθ - CotθCosecθ
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ (Secθ -Cosecθ)(1 + Tanθ + Cotθ)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ (1/Cosθ - 1/Sinθ)(1 + Sinθ/Cosθ + Cosθ/Sinθ)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ {(Sinθ - Cosθ)/(CosθSinθ) }{CosθSinθ + Sin²θ + Cos²θ)CosθSinθ) }
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ (1 + CosθSinθ)(Sinθ - Cosθ))(Cos²θSin²θ)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ (Sinθ - Cosθ + Sin²θCosθ -Cos²θSinθ)/(Cos²θSin²θ)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ (Sinθ(1 - Cos²θ) -Cosθ(1 -Sin²θ)/(Cos²θSin²θ)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ (SinθSin²θ - CosθCos²θ)(Cos²θSin²θ)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ Sinθ/Cos²θ - Cosθ/Sin²θ
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ Tanθ/Cosθ - Cotθ/Sinθ
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠ TanθSecθ - CotθCosecθ
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➠
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
(Secθ -Cosecθ)(1 + Tanθ + Cotθ) = TanθSecθ - CotθCosecθ
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀