Math, asked by prekshaprajapati61, 3 months ago

prove that tantheta÷1-cottheta+cottheta÷1-tantheta=1+sectheta

Answers

Answered by Anonymous
9

Answer:

\sf 1 \ + \ sec \theta cosec \theta \ = \ RHS

Question :

\sf \dfrac {tan \theta}{1 - cot \theta} \ + \ \dfrac {cot \theta}{1 - tan \theta}

Solution :

\implies \sf \dfrac {tan \theta}{ 1 \ - \ \dfrac {1}{tan \theta}} \ + \ \dfrac {\dfrac {1}{tan \theta}}{1 \ - \ tan \theta}

\implies \sf \dfrac {tan \theta}{\dfrac {tan \theta - 1}{tan \theta}} \ + \ \dfrac {1}{tan \theta (1 \ - \ tan \theta)}

\implies \sf \dfrac {tan^2 \theta}{tan \theta \ - \ 1} \ + \ \dfrac {1}{tan \theta (1 \ - \ tan \theta)}

\implies \sf \dfrac {tan^2 \theta}{tan \theta \ - \ 1} \ - \ \dfrac {1}{tan \theta (\theta \ - \ 1)}

\implies \sf \dfrac {tan^3 \theta \ - \ 1}{tan \theta (tan \theta \ - \ 1)}

\implies \sf \dfrac {(tan \theta \ - \ 1)(tan^2 \theta \ + \ tan \theta \ + \ 1)}{tan \theta (tan \theta \ - \ 1)}

\implies \sf \dfrac {tan^2 \theta + tan \theta \ + \ 1}{tan \theta}

\implies \sf \dfrac {tan^2 \theta}{tan \theta} \ + \ \dfrac {tan \theta}{tan \theta} \ + \ \dfrac {1}{tan \theta}

\implies \sf tan \theta \ + \ 1 \ + \ cot \theta

\implies \sf 1 \ + \ \dfrac {sin \theta}{cos \theta} \ + \ \dfrac {cos \theta}{sin \theta}

\implies \sf 1 \ + \ \dfrac {sin^2 \theta \ + \ cos^2 \theta}{sin \theta \ cos \theta}

\implies \sf 1 \ + \ \dfrac {1}{sin \theta \ cos \theta}

\implies \bf 1 \ + \ sec \theta \ cosec \theta \ = \ RHS


sreekarreddy91: https://brainly.in/question/33651138?utm_source=android&utm_medium=share&utm_campaign=question
sreekarreddy91: Can you answer @BrainlyEye
sreekarreddy91: Please
Answered by BrainlyEmpire
182

\pink{\sf{\star\;Answer}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ (Secθ -Cosecθ)(1 + Tanθ + Cotθ) = TanθSecθ - CotθCosecθ

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\orange{\sf{\star\;Step-\;by-\;step\; explanation:}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ (Secθ -Cosecθ)(1 + Tanθ + Cotθ) = Tanθ Secθ - CotθCosecθ

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\red{\sf{\star\;LHS}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ (Secθ -Cosecθ)(1 + Tanθ + Cotθ)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ (1/Cosθ - 1/Sinθ)(1  + Sinθ/Cosθ + Cosθ/Sinθ)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ {(Sinθ - Cosθ)/(CosθSinθ) }{CosθSinθ  + Sin²θ + Cos²θ)CosθSinθ) }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ (1 + CosθSinθ)(Sinθ - Cosθ))(Cos²θSin²θ)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ (Sinθ - Cosθ  + Sin²θCosθ -Cos²θSinθ)/(Cos²θSin²θ)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ (Sinθ(1 - Cos²θ)  -Cosθ(1 -Sin²θ)/(Cos²θSin²θ)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ (SinθSin²θ - CosθCos²θ)(Cos²θSin²θ)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ Sinθ/Cos²θ  - Cosθ/Sin²θ

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ Tanθ/Cosθ - Cotθ/Sinθ

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

➠ TanθSecθ - CotθCosecθ

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\blue{\sf{\star\;RHS}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\purple{\sf{\star\;Proved!}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

(Secθ -Cosecθ)(1 + Tanθ + Cotθ) = TanθSecθ - CotθCosecθ{\boxed{\green{\checkmark{}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀


sreekarreddy91: Hello @Essar03
ItzcuteMisty: Hello essar03
ItzcuteMisty: I love you
ItzcuteMisty: Plz inbox kar do
Similar questions