Prove that tanx/1-cotx+cotx/1-tanx=1+tanx+cotx
Answers
Answered by
3
Step-by-step explanation:
LHS
tanx/1-cotx+cotx/1-tanx
=(sinx/cosx)/(sinx-cosx/sinx)+(cosx/sinx)/(cosx-sinx/cosx)
=sin²x/cosx(sinx-cosx)-cos²x/sinx(sinx-cosx)
=sin³x-cos³x/sinxcosx(sinx-cosx)
=(sinx-cosx)(1+sinxcosx)/ sinxcosx(sinx-cosx)
=(1+sinxcosx)/sinxcosx
=secxcosecx+1
RHS
1+tanx+cotx
=1+(sinx/cosx)+(cosx/sinx)
=sinxcosx+sin²x+cos²x/sinxcosx
=sinxcosx+1/sinxcosx
=1+secxcosecx
LHS=RHS
Similar questions
India Languages,
6 months ago
Math,
6 months ago
Science,
6 months ago
Computer Science,
1 year ago
Business Studies,
1 year ago
Biology,
1 year ago
Math,
1 year ago