Math, asked by BrainlyProgrammer, 1 day ago

Prove that  {1+(1+2)+(1+2+3)+ ... +(1+2+3+4+...+n) } is equal to  \orange{\dfrac{n(n+1)(n+2)}{6}}where n is the no. of terms in first n natural numbers.​

Answers

Answered by mathdude500
28

\large\underline{\sf{Solution-}}

Consider,

\rm \: 1 + (1 + 2) + (1 + 2 + 3) +  -  -  -  + (1 + 2 + 3 +  -  -  -  + n) \\

Let assume that,

\rm \:S_n =  1 + (1 + 2) + (1 + 2 + 3) +  -  -  -  + (1 + 2 + 3 +  -  -  -  + n) \\

So, nth term of the series is

\rm \: T_n = 1 + 2 + 3 +  -  -  + n \\

\rm \: T_n = \displaystyle\sum_{k=1}^n\rm k \\

\rm \: T_n = \dfrac{n(n + 1)}{2} \\

\rm \: T_n = \dfrac{1}{2}( {n}^{2} + n) \\

So, Sum of n terms of series is given by

\rm \: S_n = \displaystyle\sum_{k=1}^n\rm T_k \\

\rm \: S_n = \dfrac{1}{2} \displaystyle\sum_{k=1}^n\rm ( {k}^{2}  + k) \\

\rm \: S_n = \dfrac{1}{2}\bigg( \displaystyle\sum_{k=1}^n\rm {k}^{2}  + \displaystyle\sum_{k=1}^n\rm k\bigg) \\

\rm \: S_n = \dfrac{1}{2}\bigg(\dfrac{n(n + 1)}{2}  + \dfrac{n(n + 1)(2n + 1)}{6}  \bigg)  \\

\rm \: S_n = \dfrac{1}{2} \times \dfrac{n(n + 1)}{2}\bigg(1 + \dfrac{2n + 1}{3}  \bigg)  \\

\rm \: S_n = \dfrac{1}{2} \times \dfrac{n(n + 1)}{2}\bigg(\dfrac{3 + 2n + 1}{3}  \bigg)  \\

\rm \: S_n = \dfrac{1}{2} \times \dfrac{n(n + 1)}{2}\bigg(\dfrac{2n + 4}{3}  \bigg)  \\

\rm \: S_n = \dfrac{1}{2} \times \dfrac{n(n + 1)}{2}\bigg(\dfrac{2(n + 2)}{3}  \bigg)  \\

\rm\implies \:S_n = \dfrac{n(n + 1)(n + 2)}{6}  \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used :-

\boxed{\sf{  \:\displaystyle\sum_{k=1}^n\rm k \:  =  \:  \frac{n(n + 1)}{2} \: }} \\

\boxed{\sf{  \:\displaystyle\sum_{k=1}^n\rm  {k}^{2}  \:  =  \:  \frac{n(n + 1)(2n + 1)}{6} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \:\displaystyle\sum_{k=1}^n\rm  {k}^{3}  \:  =  \:   {\bigg[\dfrac{n(n + 1)}{2} \bigg]}^{2}  \: }} \\

\boxed{\sf{  \:\displaystyle\sum_{k=1}^n\rm  1  \:  =  \:   n  \: }} \\

Answered by maheshtalpada412
18

Step-by-step explanation:

Answer:-

In the series \sf 1+(1+2)+(1+2+3) \ldots \ldots n th term is the sum of numbers from 1 ton. So, the n th term is \tt\dfrac{n(n+1)}{2}

So, we need to find the sum of a series whose n th term is \tt\frac{n(n+1)}{2}=\frac{n^{2}+n}{2}

Therefore:-

\[ \begin{aligned}  \tt \color{red}\sum \frac{n^{2}}{2}  &\tt \color{red}=\frac{n(n+1)(2 n+1)}{6 \times 2}=\frac{n(n+1)(2 n+1)}{12} \\  \\ \tt \color{blue}\sum \frac{n}{2} &\tt \color{blue}=\frac{n(n+1)}{2 \times 2}=\frac{n(n+1)}{4} \\  \\\tt \color{orange} \sum \frac{n(n+1)}{2} &\tt \color{orange}=\sum \frac{n^{2}}{2}+\sum \frac{n}{2} \\  \\ &\tt \color{darkred}=\frac{n(n+1)(2 n+1)}{12}+\frac{n(n+1)}{4 } \\ \\  &\tt \color{green}=\frac{n(n+1)}{12}[(2 n+1)+3] \\  \\ &\tt \color{purple}=\frac{n(n+1)}{12}(2 n+4)  \\  \\ & \boxed{\tt \pink{=\frac{n(n+1)(n+2)}{6} } }\\  \\ &  \color{lime} \mathbb{\therefore \: HENCE, \:  \:  \:  FINAL \:  \:  \:  ANSWER}\end{aligned} \]

Similar questions