Math, asked by sreya567159, 3 months ago

Prove that :-(1) \:  \frac{tan \theta}{1 - cot \theta}   +  \frac{cot\theta }{1 - tan \theta}  = 1 + tan\theta + cot\theta \: \:

Answers

Answered by Anonymous
214

To Prove :-

  • \sf \purple { \:  \dfrac{tan\theta}{1 - cot\theta}   +  \dfrac{cot\theta}{1 - tan\theta}  = 1 + tan\theta + cot\theta }\: \:

Proof :-

L.H.S

\sf \pink  {:\implies \dfrac{tan\theta}{1 -  \dfrac{1}{tan\theta} }  +  \dfrac{ \dfrac{1}{tan\theta} }{1 - tan\theta}}  \\ \\ \\  :\implies \sf \dfrac{tan\theta}{ \dfrac{tan\theta - 1}{tan\theta} }  +  \frac{1}{tan\theta(1 - tan\theta)}  \\ \\ \\  :\implies  \sf \dfrac{ {tan}^{2} \theta}{tan\theta - 1}  -  \dfrac{1}{tan\theta(tan\theta - 1)}  \\  \\\\ :\implies \sf  \dfrac{ {tan}^{3}\theta  - 1}{tan\theta(tan\theta - 1)}  \\  \\\\  :\implies \sf  \dfrac{(tan\theta - 1)( {tan}^{2}\theta +  {1}^{2}  + tan\theta) }{tan\theta(tan\theta - 1)}  \\ \\ \\  :\implies \sf \dfrac{( {tan}^{2}\theta +  {1}^{2}  + tan\theta) }{tan\theta} \\  \\\\  :\implies  \sf  \dfrac{ {tan}^{2} \theta}{tan\theta}  +  \dfrac{1}{tan\theta}  +  \dfrac{tan\theta}{tan\theta}  \\  \\\\   \sf\pink {: \implies tan\theta + cot\theta + 1}\\\\

=R.H.S

  • Hence, (Proved..!!)
Similar questions