Math, asked by jk3201, 1 year ago

prove that
1 +  \sin(2x)  = ( \sin(x)  +  \cos(x) )^{2}

Answers

Answered by rizwan35
1

since \:  \sin(2x)  = 2 \sin(x)  \cos(x)  \\  \\ and \:  \sin ^{2} (x)  +  \cos {}^{2} (x)  = 1 \\  \\ therefore \\  \\
L. H. S.
 = 1  + \sin(2x)  =  \sin {}^{2} (x)  +  \cos {}^{2} (x)  + 2 \sin(x)  \cos(x)  \\  \\ using \: identity \: a {}^{2}  + b {}^{2}  + 2ab = (a + b) {}^{2}  \\  \\ therefore \\  \\  \sin {}^{2} (x)  +  \cos {}^{2} (x)  + 2 \sin(x)  \cos(x)  \\  \\  = ( \sin(x)  +  \cos(x) ) {}^{2}  = r.h.s. \\  \\ proved \\  \\  \\ hope \: it \: helps
Similar questions