Math, asked by BrainlySunShine, 1 year ago

Prove that

 {(1 - sin \:  + cos \: )}^{2}  = 2(1 + cos) \:  \: (1 - sin)

Answers

Answered by pranay0144
2

Answer:

Hey mate i will help u

Refers with attachments

Attachments:
Answered by ssunaina3355
1

Answer:

LHS

=

[(1+ sinA - cosA) /

(1+ sinA + cosA)]²

according to identity ,

(a+b-c)² = a²+b²+c²+2ab-2bc-2ac

=( 1 + sin²A + cos²A + 2sinA - 2sinA.cosA - 2cosA ) /

( 1 + sin²A + cos²A + 2sinA + 2sinA.cosA + 2cosA)

=( 1 + 1 + 2sinA - 2cosA - 2sinA.cosA ) /

( 1 + 1 + 2sinA + 2cosA + 2sinA.cosA)

=( 2 + 2sinA - 2cosA - 2sinA.cosA ) /

( 2 + 2sinA + 2cosA + 2sinA.cosA)

=2( 1 + sinA - cosA - sinA.cosA ) /

2( 1 + sinA + cosA + sinA.cosA)

=( 1 + sinA - cosA - sinA.cosA ) /

( 1 + sinA + cosA + sinA.cosA)

=[ 1(1 + sinA) -cosA(1 + sinA) ] /

[ 1(1 + sinA) +cosA(1 + sinA)]

=[ (1 - cosA)(1 + sinA) ] /

[ (1 + cosA)(1 + sinA)]

=( 1 - cosA ) / = RHS ,hence proved

( 1 + cosA)

MARK BRAINLIEST...

PLZZZ

Similar questions