Math, asked by joshinrexy22, 1 year ago

Prove that : ( 1 + tan^{2} A) ( cos A * sin A) = tan A

Answers

Answered by Silverbolt
2
Ans

=> sec²A*cosA*sinA    (since, sec²A=1+tan²A)
=>(1/cos²A)*cosA*sinA  (since, secA=1/cosA)
=>sinA/cosA
=>tanA.     [proved]

Answered by Anonymous
1

Here's your answer!

 =  >  (1 +  {tan}^{2} A)(cos \: A \times sin \: A) = tan \: A

 = >  ({sec}^{2} A)(cos \: A \times  \: sin \: A) \:  = tan \: A

 =  >  (\frac{1}{ {cos}^{2} A})(cos \: A \times sin \: A) = tan \: A

 =  >  \frac{sin \: A}{cos \: A}  = tan \: A

=> tan A = tan A

=> L.H.S = R.H.S

Hope it helps!

Similar questions