Math, asked by Abhay43635, 1 year ago

Prove that:-
2 \cos  a =  \sqrt{2 \sqrt{2 \sqrt{2 + 2 \cos8a } } }

Answers

Answered by Anant02
1

2 \cos(a )=  \sqrt{2  + \sqrt{2 +  \sqrt{2 + 2 \cos(8a) } } }  \\ rhs  \\ =  \sqrt{2 +  \sqrt{2  + \sqrt{2 + 2 \cos(8a) } } }  \\  =  \sqrt{2 +  \sqrt{2 +  \sqrt{2 + 2(2 { \cos(4a) }^{2}  - 1)} } }  \\  =  \sqrt{2  + \sqrt{2  + \sqrt{2 + 4 { \cos(4a) }^{2} - 2 } } }  \\  =  \sqrt{2  + \sqrt{2  + \sqrt{4 { \cos(4a) }^{2} } } }  \\  =  \sqrt{2 +  \sqrt{2  + 2 \cos(4a) } }  \\  =  \sqrt{2 +  \sqrt{2 + 4 { \cos(2a)  }^{2}  - 2} }  \\  =  \sqrt{2 +  \sqrt{4 { \cos(2a) }^{2} } }  \\  =  \sqrt{2 + 2 \cos(2a) }  \\  =  \sqrt{2 + 4 { \cos(a) }^{2}  - 2}  \\  =  \sqrt{4 { \cos(a) }^{2} }  \\  = 2 \cos(a)  \\ lhs

Anant02: mark it as brainliest
Similar questions