Math, asked by samyak05, 1 month ago


Prove that
3x² + {3y}^{2}  - 6x + 4y - 1 = 0
represents a circle. Find its centre and radius.​

Answers

Answered by mathdude500
1

Basic Concept Used :-

In order to show that the equation represents a circle is it enough to get it into the form of

 \sf \:  {(x - h)}^{2}  +  {(y - k)}^{2}  =  {r}^{2}

 \sf \: where \: (h, k) \: represents \: centre \: and \: r \: represent \: radius.

Let's solve the problem now!!

Given equation is

\rm :\longmapsto\: {3x}^{2}  +  {3y}^{2}  - 6x + 4y - 1 = 0

\rm :\longmapsto\:( {3x}^{2}  - 6x) + ( {3y}^{2} + 4y) - 1 = 0

\rm :\longmapsto\:3( {x}^{2} - 2x) + 3( {y}^{2}  +  \dfrac{4}{3}y )  = 1

  • Divide both sides by 3, we get

\rm :\longmapsto\: {x}^{2}  - 2x +  {y}^{2}  - \dfrac{4}{3}y = \dfrac{1}{3}

  • Now adding 1 and 4/9 on both sides

\rm :\longmapsto\:( {x}^{2}  - 2x + 1) + ( {y}^{2}  + \dfrac{4y}{3} + \dfrac{4}{9}) = \dfrac{1}{3}  + 1 + \dfrac{4}{9}

\rm :\longmapsto\: {(x - 1)}^{2}  +  {\bigg( y + \dfrac{2}{3} \bigg) }^{2}  = \dfrac{3 + 9 + 4}{9}

\rm :\longmapsto\: {(x - 1)}^{2}  +  {\bigg( y + \dfrac{2}{3} \bigg) }^{2}  = \dfrac{16}{9}

\rm :\longmapsto\: {(x - 1)}^{2}  +  {\bigg( y + \dfrac{2}{3} \bigg) }^{2}  =  {\bigg(\dfrac{4}{3}  \bigg) }^{2}

\bf\implies \:its \: an \: equation \: of \: circle

whose

\rm :\longmapsto\:Centre \: is \:  \bigg(1,  -  \: \dfrac{2}{3}  \bigg)

and

\rm :\longmapsto\:Radius \: is \: \dfrac{4}{3}

More Information :-

 \sf \: The \:  general \: equation \: of \: circle \: is \:

 \sf \:  {x}^{2}  +  {y}^{2}  + 2gx + 2fy + c = 0

then

 \sf \: Centre \:  =  \: ( -  \: g,  \:  -  \: f)

and

 \sf \: Radius \:  =  \:  \sqrt{ {g}^{2} +  {f}^{2} - c  }

Similar questions