Math, asked by Anonymous, 1 month ago

prove that
4sin\alpha* sin(\alpha +\frac{\pi }{3} )*sin(\alpha -\frac{\pi }{3} )=sin 3\alpha

Answers

Answered by mathdude500
5

Appropriate Question :-

Prove that

\rm :\longmapsto\:4 \: sin \alpha \: sin\bigg[ \alpha  + \dfrac{\pi}{3} \bigg] \: sin\bigg[ \alpha  - \dfrac{\pi}{3} \bigg] =  - sin3\alpha

 \green{\large\underline{\sf{Solution-}}}

Consider,

\rm :\longmapsto\:4 \: sin \alpha \: sin\bigg[ \alpha  + \dfrac{\pi}{3} \bigg] \: sin\bigg[ \alpha  - \dfrac{\pi}{3} \bigg]

We know,

 \pink{\boxed{ \tt{ \: sin(x + y) \: sin(x - y) =  {sin}^{2}x -  {sin}^{2}y \: }}}

So, using this identity, we get

\rm \:  =  \: 4 \: sin \alpha \bigg[ {sin}^{2}\alpha  -  {sin}^{2}\dfrac{\pi}{3}  \bigg]

We know,

\boxed{ \tt{ \: sin\dfrac{\pi}{3} =  \frac{ \sqrt{3} }{2} \: }}

So, using this, we get

\rm \:  =  \: 4 \: sin\alpha \bigg[ {sin}^{2}\alpha  -  {\bigg[\dfrac{ \sqrt{3} }{2} \bigg]}^{2}  \bigg]

\rm \:  =  \: 4 \: sin\alpha \bigg[ {sin}^{2}\alpha  -  \dfrac{3}{4}   \bigg]

\rm \:  =  \: 4 \: sin\alpha \bigg[\dfrac{4 {sin}^{2}\alpha  -  3}{4}   \bigg]

\rm \:  =  \: sin\alpha  \: (4 {sin}^{2}\alpha  - 3)

\rm \:  =  \:  {4sin}^{3}\alpha  - 3sin\alpha

\rm \:  =  \:  -  \: ( \: 3sin\alpha  -  {4sin}^{3} \alpha  \: )

\rm \:  =  \:  -  \: sin3\alpha

Hence,

\boxed{ \tt{ \: \:4 \: sin \alpha \: sin\bigg[ \alpha  + \dfrac{\pi}{3} \bigg] \: sin\bigg[ \alpha  - \dfrac{\pi}{3} \bigg] =  - sin3\alpha }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \: sin2x = 2sinx \: cosx \: }}

\boxed{ \tt{ \: sin2x =  \frac{2 \: tanx}{1 +  {tan}^{2}x }  \: }}

\boxed{ \tt{ \: cos2x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2}x }  \: }}

\boxed{ \tt{ \: cos2x =  {cos}^{2}x -  {sin}^{2}x \: }}

\boxed{ \tt{ \: cos2x = 1 -  2{sin}^{2}x \: }}

\boxed{ \tt{ \: cos2x = 2{cos}^{2}x - 1 \: }}

\boxed{ \tt{ \: tan2x =  \frac{2 \: tanx}{1 -  {tan}^{2}x }  \: }}

\boxed{ \tt{ \: cos3x =  {4cos}^{3}x - 3cosx \: }}

\boxed{ \tt{ \: tan3x =  \frac{3tanx -  {tan}^{3}x}{1 - 3 {tan}^{2} x} \: }}

Similar questions