Prove that .
Answers
Answered by
0
Solution :
i) Let tan^-1 ( 1/5 ) = A => tanA = 1/5
tan^-1 ( 1/99 ) = B => tanB = 1/99
tan^-1 ( 1/70 ) = C => tanC = 1/70
ii ) Tan 2A = ( 2tanA )/( 1 - tan²A )
= ( 2/5 )/[ 1 - ( 1/5 )² ]
= (2/5 )/[ 1 - 1/25 ]
= (2/5)/[ ( 25 - 1 )/25 ]
= (2/5)/(24/25)
= ( 2 × 25 )/( 5 × 24 )
= 5/12
iii ) tan 4A = ( 2tan2A )/( 1 - tan²2A )
= ( 2 × 5/12 )/[ 1 - ( 5/12 )² ]
= ( 5/6 )/( 1 - 25/144 )
= ( 5/6 )/[ (144 - 25 )/144 ]
= (5/6)/( 119/144)
= ( 5 × 144 )/( 6 × 119 )
= 120/119
iv ) tan( 4A + B )
= ( tan4A + tanB )/( 1 - tan4AtanB )
= [(120/119)+1/99]/[1-(120/119)(1/99)]
= [ 11880+119 ]/( 11781 - 120 )
= 11999/11661
v ) tan( 4A+B-C)
= [tan(4A+B)-tanC]/[1+tan(4A+B)tanC]
= [(11999/1166)-1/70]/[1+(11999/1166)(1/70)]
= 828269/828269
= 1
= tan ( π/4 )
Therefore ,
4A+B - C = π/4
4tan^-1(1/5)+tan^-1(1/99)-tan^-1(1/70)=π/4
••••
i) Let tan^-1 ( 1/5 ) = A => tanA = 1/5
tan^-1 ( 1/99 ) = B => tanB = 1/99
tan^-1 ( 1/70 ) = C => tanC = 1/70
ii ) Tan 2A = ( 2tanA )/( 1 - tan²A )
= ( 2/5 )/[ 1 - ( 1/5 )² ]
= (2/5 )/[ 1 - 1/25 ]
= (2/5)/[ ( 25 - 1 )/25 ]
= (2/5)/(24/25)
= ( 2 × 25 )/( 5 × 24 )
= 5/12
iii ) tan 4A = ( 2tan2A )/( 1 - tan²2A )
= ( 2 × 5/12 )/[ 1 - ( 5/12 )² ]
= ( 5/6 )/( 1 - 25/144 )
= ( 5/6 )/[ (144 - 25 )/144 ]
= (5/6)/( 119/144)
= ( 5 × 144 )/( 6 × 119 )
= 120/119
iv ) tan( 4A + B )
= ( tan4A + tanB )/( 1 - tan4AtanB )
= [(120/119)+1/99]/[1-(120/119)(1/99)]
= [ 11880+119 ]/( 11781 - 120 )
= 11999/11661
v ) tan( 4A+B-C)
= [tan(4A+B)-tanC]/[1+tan(4A+B)tanC]
= [(11999/1166)-1/70]/[1+(11999/1166)(1/70)]
= 828269/828269
= 1
= tan ( π/4 )
Therefore ,
4A+B - C = π/4
4tan^-1(1/5)+tan^-1(1/99)-tan^-1(1/70)=π/4
••••
Answered by
0
HELLO DEAR,
Answer:
Step-by-step explanation:
GIVEN:- 4tan-¹(1/5) + tan-¹(1/99) - tan-¹(1/70)
we know, [tan-¹x - tan-¹y = tan-¹ (x - y)/(1 + xy)]
=> 4tan-¹(1/5) + tan-¹ [1/99 - 1/70]/[1 + (1/99)*(1/70)]
=> 4tan-¹(1/5) + tan-¹ [(70 - 99)]/[6930 + 1]
=> 4tan-¹(1/5) + tan-¹[-29/6931]
=> 4tan-¹(1/5) - tan-¹[1/239]
=> 2[2tan-¹(1/5)] - tan-¹(1/239)
=> 2[tan-¹{(10/25)}/{(25 - 1)/25} - tan-¹(1/239)
=> 2tan-¹(5/12) - tan-¹(1/239)
=> tan-¹(120)/(144 - 25) - tan-¹(1/239)
=> tan-¹(120/119) - tan-¹(1/239)
=> tan-¹ {120/119 - 1/239}/{1 + (120/119)*(1/239)}
=> tan-¹ {(28680 - 119)/(28441 + 120)}
=> tan-¹ {28561/28561}
=> tan-¹(1) = π/4
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions
Political Science,
7 months ago
Math,
7 months ago
Math,
7 months ago
Computer Science,
1 year ago
Math,
1 year ago