Math, asked by virushka73, 1 year ago

prove that A.M\geqslant\:G.M\geqslant\:H.M [class 11th , chapter -inequalities]​

Answers

Answered by BrainlyConqueror0901
118

Step-by-step explanation:

\huge{\boxed{\sf{SOLUTION-}}}

\huge{\boxed{\sf{PROOF-}}}

A.M-G.M=\frac{a+b}{2}-\sqrt{ab}\\A.M-G.M=)\frac{a+b-2\sqrt{ab}}{2}\\=)A.M-G.M=\frac{{(\sqrt{a}+\sqrt{b}}^{2}}{2}\geqslant\:0

\huge{\boxed{\sf{A.M\geqslant\:G.M}}}-----(1)

G.M - H.M =   \sqrt{ab}  -  \frac{2ab}{a + b}  \\  G.M - H.M =  \frac{ \sqrt{ab} }{a + b} \times (a + b - 2 \sqrt{ab}  \\ G.M - H.M =   (\frac{ \sqrt{ab} }{a + b} ) \times ( \sqrt{a}  -  \sqrt{b} ) ^{2}  \geqslant 0

\huge{\boxed{\sf{G.M \geqslant H.M -  -  -  -  - (2)}}}

FROM (1)and (2 )

\huge{\boxed{\sf{A.M \geqslant G.M \geqslant H.M  }}}

\huge{\boxed{\sf{PROVED-}}}

Similar questions